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RELEVANT GRAPH CONCEPTS FOR BIG DATA
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Abstract. The subject of much of the creative research and development of graph analytics and visualization has

been on data. Graph methods for data structuring, interpretation, and visualization have become critical areas of

attention for the application of big data. In order to represent complex interconnections and big groups of closely

connected entities, graphs are well adapted. Graphs that model any complex system of a big data domain are so

large that they have thousands or even millions of nodes and edges. The main aim of dealing with large graphs

is to show the graph properties of a comparatively smaller subgraph. Hence, we will try to provide a solution to

big data analytics in this study. So these solutions can be applied to the big data of social networks.
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1 Introduction

Enormous data networks are everywhere nowadays. Social networks, genetic networks, interac-
tions networks, transportation networks and organizational networks are examples of big data
networks (Wasserman & Faust, 1994; Reguly et al., 2006; Merrill, Bakken, Rockoff, Gebbie, &
Carley, 2007). The information included in those big data networks deserves efficacious insights
and patterns. In addition, these insights can be useful for organizations in taking better business
decisions. Hence the big size and the complexity of such networks makes the manual analysis
difficult.

Big data is defined as the large amount of data sets that can not be analyzed and managed
with traditional data processing tools. What is meant by big data is not only the volumetric
size, but also the fact that these data are formed and stored at an increasing speed beside the
volume and type, that is, the speed of data generation and data diversity. Files such as social
media posts, photos and videos are collected from many sources in different ways. In order
to obtain meaningful and valuable information from the large, fast and diverse data collection
collected, the data must be made processable. The term big data analysis is used for the methods
developed for this purpose. In big data analysis, in addition to data mining, computer science,
machine learning, database management, especially mathematical models and algorithms and
statistics science come to the fore.

Networking for big data is a cross discipline area. As big data research is in its early stages,
the research of big data networking interconnects with the other characteristics of big data, such
as big data evolution, mathematical properties, storage distribution, upper layer application
expectation and demands. Accordingly, in the global environment of big data, it is vital to
analyze networking for big data (Yu, Liu, Dou, Liu, & Zhou, 2017).

Big Data is generally defined as large-scale structural, semi-structural and / or unstructured
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data that cannot be processed with traditional databases and software (Marz & Warren, 2015).
Big data needs new management and processing methods because they contain various types of
data, are high-dimensional and are produced at high speeds. While big data was first character-
ized by the first three features below, in later times, as a result of the change in the definition
of big data, five different characteristics began to be characterized (Priya, 2018):

� Volume / Size (Volume): It is the size of the data that needs to be processed. Big data
has the gigabyte, which can be processed by traditional systems, has a petabyte or larger data
size, which is much larger than the megabyte level.

� Velocity: It indicates the generation frequency and dynamism of the data. In real time
applications, it is possible to generate a lot of data in a very short time.

� Variety: It is the emergence of data in various forms, in other words in more than one
form. Therefore, the data can occur in different sources.

� Reliability (Veracity): The data is reliable. The data must be able to reach the correct
result in analysis. Incomplete data may be encountered in data of high volume and from different
sources.

� Value: The data is worth processing. Data that is very valuable for one analysis may be
worthless for another analysis.

The big data sets should be represented using graphs intuitively, and then substantial the-
ories and tools for graphs can be applied. Data are considered as graphs in network analysis.
Graphs consist of nodes and edges. The attributes correspond to the nodes in the networks and
interrelations between several attributes correspond to the edges. Since the interconnections
between the nodes of the network are of different kinds, the resulting graph-based structures are
frequently very complicated.

The generation of graph theory can be traced back to 1736, and the development of graph
theory until the last century, it attracted people’s attention in 1940s. Graph theory has very
intuitive and straightforward characteristics. In particular when graph theory is applied in
order to solve some practical problems, it can be more better to convert the problem into an
identical graph theory problem. Due to these properties, graph theory is widely used in modern
science. Computer, systems engineering, network engineering, applied mathematics and many
other areas are the instances that have been applied and evolved. In simple terms, graph theory
is a somewhat older discipline, and the tenacious vitality of graph theory like the human neural
network has contributed many to the development of human science and technology (Peretto,
1992).

Graph theory and big data analysis create an effective fusion model. It also makes people
recognize that big data analytics and graph theory have specific relations, and can also encourage
the study and evolution of big data analytics under the function of graph theory. Big data
analytics and graph theory are consolidated. Particularly the solution of difficult problems can
be better in the integration of the two (Chen, Wang, & Tian, 2019).

It is worth mentioning that when big data is applied to graph theory problems, the following
fundamentals of implementation should be followed. The problem can be solved by modelling
it by the use of graph theory. Numerous problems have been solved by related notions of graph
theory such as graph coloring, graph covering and so on by the influential fusion of graph theory
and big data.

For this reason, in the research of social problems, natural science, engineering technology,
and economic management, graph theory is an important modern mathematical tool and has
attracted more and more attention in the world of mathematics and other scientific commu-
nities. Graphs maintain a robust primitive for modeling data in a diversity of applications.
Nodes in graphs in general represent real world objects, and edges correspond to relationships
between objects. Social networks, biological networks, and dynamic network traffic graphs are
the instances of data modeled as graphs. Graphs are very large, with thousands even millions of
nodes and edges in big data applications. By only visual assessment, it is almost impossible to
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understand the information encoded in large graphs. Graph concepts and graph algorithms are
utilized in order to make the graph of big data processable using available tools and techniques
(Miller, Ramaswamy, Kochut, & Fard, 2015).

In this paper, we consider simple finite undirected graphs without loops and multiple edges.
Let G = (V,E) be a graph with a vertex set V = V (G) and edge set E = E(G). The order
of G is the number of vertices in G. The distance d(u, v) between two vertices u and v in G
is the length of the shortest path between them. The diameter of G, denoted by diam(G), is
the largest distance between two vertices in V (G). The degree degG(v) of a vertex v ∈ V (G) is
the number of edges incident to v. For any vertex v ∈ V (G), the open neighbourhood of v is
NG(v) = {u ∈ V (G) | uv ∈ E(G)} and closed neighbourhood of v is NG[v] = NG(v) ∪ {v}. The
complement Ḡ of a graph G has V (G) as its vertex set, but two vertices are adjacent in Ḡ if
only if they are not adjacent in G (Bondy & Murty, 1976).

Social networks have received much attention in recent years since social networks are an
important data source of big data applications. Researchers have developed several measures in
graph theory to understand and make use of the information in large networks. Centrality is
one of these measurements.

Centrality is defined as the relative importance of a node in a graph based on how well the
nodes ‘connect’ the graph. As an example, in a social network, it is important to know how
each person is connected with other people. People who are more connected in a graph are
more central in the network and thus they are more influential or important in the community
represented by that network. Various different types of centrality measures have been proposed
over the years (Priya, 2018).

In this study, we only deal with three concepts of centrality. These are vertex betweenness
centrality (Unnithan, Kannan, & Jathavedan, 2014; Freeman, 1977; A. Aytac, Ciftci, & Kartal,
2019; A. Aytac & Ciftci, 2019), Edge betweenness centrality (Girvan & Newman, 2002; Boc-
caletti et al., 2007; Comellas & Gago, 2007; Aytaç & Öztürk, 2018), and closeness centrality
(Dangalchev, 2006, 2011; Aytaç & Odabaş, 2011; Aytaç & Odabaş Berberler, 2018). First, ver-
tex betweenness centrality values of wheel graph, complete graph, cycle graph and hypercube
graph obtained by Raghavan Unnithan et al. in 2014 are presented. Then, vertex betweenness
centrality values for total graphs of some known graphs are computed by Aytac et al. in 2019.
The total graph is important since it is the largest graph that is formed by the adjacent relations
of nodes and edges of a graph. Second, the concepts of edge betweenness centrality and average
edge betweenness centrality are defined. The results obtained by Comellas, F. and Gago, S in
2007 are presented. Then, the computational results are given including the general results for
the complement of a graph and the values for some known graph types such as cycle, star, wheel,
complete bipartite graph presented by Aytaç and Aksu in 2018. Finally, closeness centrality is
defined and the values computed by Dangalchev in 2006 for complete graph, star, path and cycle
are presented. Then, the works by Aytac and Berberler in 2011 and 2018 are presented.

2 Relevant Graph Theory Concepts for Big Data

Social networks have gained a lot of attention as a key data source for big data applications
in recent years. Researchers have proposed different measures in graph theory to understand
and use the data in large networks. Up now, different properties have been introduced, such as
its volume, density, average distance, distributions of power-law degrees, clustering coefficient,
small-world phenomenon, and centrality. We give definitions of centrality and closeness concepts
for big data in this section.
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2.1 Vertex betweenness centrality

For a network, there are a number of significant properties. Any of them is that vertices on
the shortest path between some vertices (Bader, Kintali, Madduri, & Mihail, 2007; Unnithan et
al., 2014). Vertex betweenness centrality is based on the calculation of the shortest path. The
significance or centrality of a vertex in a network is defined by it. And also, in the analysis of
computer networks, social networks, and many other forms of network data models, it has a
key role (Otte & Rousseau, 2002; Latora & Marchiori, 2007; Estrada, 2006; Rubinov & Sporns,
2010). In a communication system, for instance, vertices which have higher centrality value are
more significant. Because these vertices pass through more data than the others. As they reside
on the greatest number of paths taken by messages, deleting these vertices from the network
would cut off communications with others. The centrality of vertex betweenness is thus relevant
to the connectivity of a network and its reliability. In this research, in particular, this idea is
used in human communication and it suggests that when a person in a group is placed on the
shortest communication route joining couples of others, that person is in the central position
(Freeman, 1977).

Betweenness centrality CB(v) for a vertex v is defined as

CB(v) =
∑

s6=v 6=t

σst(v)

σst

where σst is the number of shortest paths with vertices s and t as their end vertices, while σst(v)
is the number of those shortest paths that include vertex v.
The betweenness centrality of a graph G on n vertices is defined as

CB(G) =
2
∑n

i=1 [CB (v∗)− CB (vi)]

(n− 1)2(n− 2)

where CB (v∗) is the largest value of CB (vi) for any vertex vi in the given graph G.

Theorem 1. (Unnithan et al., 2014) The betweenness centrality of a vertex v in a wheel graph
Wn, n > 5, is given by

CB(v) =

{
(n−1)(n−5)

2 , if v is central vertex
1
2 , otherwise.

Theorem 2. (Unnithan et al., 2014) Let Kn be a complete graph on n vertices and e = (vi, vj)
an edge of it. Then, the betweenness centrality of vertices in Kn − e is given by

CB(v) =

{
1

n−2 , if v 6= vi, vj
0, otherwise.

Theorem 3. (Unnithan et al., 2014) The betweenness centrality of a vertex in complete bipartite
graph Km,n is given by

CB(v) =


1
m

(
n
2

)
if deg(v) = n

1
n

(
m
2

)
if deg(v) = m.

Theorem 4. (Unnithan et al., 2014) The betweenness centrality of any vertex in a path is the
product of the number of vertices on either side of that vertex in the path.

Theorem 5. (Unnithan et al., 2014) The betweenness centrality of a vertex v in a cycle Cn is
given by

CB(v) =


(n−1)(n−3)

8 , if n is odd

(n−2)2
8 , if n is even.
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Theorem 6. (A. Aytac et al., 2019) Let G be a graph of order n and size m with γ(G) > 2 .
For v ∈ V (Ḡ)

m−
∣∣∪di=1NG [vvi]

∣∣
n− 3

6 CB(v) 6 m−
∣∣∣∪di=1NG [vvi]

∣∣∣
where the vertices v1, v2, . . . , vd are adjacent vertices of v in G.

Definition 1. (Behzad, 1967) The total graph T (G) of the graph G = (V (G), E(G)) has vertex
set V (G) ∪ E(G), and two vertices of T (G) are adjacent whenever they are neighbors in G. It
is easy to see that T (G) always contains both G and L(G) as induced subgraphs.

The total graph is the largest graph that is formed by the adjacent relation of elements of a
graph. It is important from this respect.

Theorem 7. (A. Aytac et al., 2019) Let T (Kn) be total graph of Kn. Then, the betweenness
centrality of a vertex v in T (Kn) is

CB(v) =
1

4
(n− 1)(n− 2).

Theorem 8. (A. Aytac et al., 2019) Let T (K1,n) be total graph of star and c be central vertex
of K1,n. Then, the betweenness centrality of a vertex v in T (K1,n) is

CB(v) =


n(n− 1), if v = c
0, if v ∈ V (K1,n)− {1}
n−1
2 , if v ∈ V (L(K1,n)).

Theorem 9. (A. Aytac et al., 2019) Let T (Km,n) be total graph of Km,n with vertex partition
V1 ∪ V2 ∪ V3, where
V1 = {v = vi ∈ V (Km,n) | 1 ≤ i ≤ m} , V2 = {v = vj ∈ V (Km,n) | m+ 1 ≤ j ≤ m+ n},
V3 = {v = eij ∈ V (L (Km,n)) | 1 ≤ i ≤ m,m+ 1 ≤ j ≤ m+ n} . Then the betweenness centrality
of a vertex v in T (Km,n) is

CB(v) =



(
n
2

)(
1
m + 1

)
, if v ∈ V1(

m
2

)(
1
n + 1

)
, if v ∈ V2

1
2(mn− 1), if v ∈ V3.

Theorem 10. (A. Aytac et al., 2019) Let T (Cn) be total graph of Cn on 2n vertices. Then,
the betweenness centrality of a vertex v in T (Cn) is

CB(v) =

{
(n−1)(n−2)

4 , if n is odd
2n2−3n+2

8 , if n is even.

Theorem 11. (A. Aytac et al., 2019) Let T (Pn) be total graph of Pn with vertex partition
V (Pn)∪V (L (Pn)) where V (Pn) = {v = vi | 1 ≤ i ≤ n}, V (L (Pn)) =

{
v = ej(j+1) | 1 ≤ j ≤ n− 1

}
.

Then, the betweenness centrality of a vertex v in T (Pn)

a) if v = vi ∈ V (Pn)

CB(v) =

{
2(i− 1)(n− i), 2 6 i 6 n− 1
0, otherwise

b) if v = ej(j+1) ∈ V (L (Pn))

CB(v) = 2(j − 1)(n− 1− j) + (n− j)
j−1∑
k=1

1

n− k
+ j

n−1∑
k=j+1

1

k
.
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The purpose of betweenness centrality for network analysis is to determine if any vertex is
more significant than others. Of course, the significance of the vertex depends on what the graph
is reflecting and modeling. For instance, a vertex that has a maximum degree might describe
an important and influential individual in dealing with networks that describe links between
individuals. However the value of a vertex in a communication network can be determined by
the number of the shortest route of which it is a part, as in that case, it can mean its volume
of work in relation to the processing and transmission of information. Hence, betweenness
centrality is also considered to be a relevant measure for graph and big data analysis. Computing
the betweenness centrality of is very complicated as it requires determining the shortest paths in
a graph among all couples of vertices. Betweenness centrality’s computation for simple graphs
is crucial. If a complex network can be split into more petite networks, then the solutions
to the problem of optimization on the tinier networks can be applied to solve the problem of
optimization on the larger network. In graph operations, betweenness centrality can be studied.
It is possible to apply the principles on the vertices examined in this paper to the edges of the
graph.

2.2 Edge Betweenness

A graph-theoretic term vertex betweenness was first introduced by Freeman (Freeman, 1977) in
the late ’70s as a significant element in the reliability, simulation, and measurement analysis of
complex networks. Then in 2002, Girvan and Newman (Girvan & Newman, 2002) extended this
concept to edges and presented the edge betweenness of an edge as the fraction of the shortest
paths that pass along it between pairs of vertices. A specified edge’s edge betweenness value is
the fraction of the shortest routes that pass through that edge, calculated across all couples of
vertices. Both localized and global formation of the graph are considered by this calculation. It
is critical to assess the average edge betweenness of many graph types because the average edge
betweenness provides knowledge on which edge generates most of the network weakness.

Average edge betweenness of the graph G is defined as b(G) = 1
|E|
∑

e∈E be, where |E| is the

number of the edges and be is the edge betweenness of the edge e, defined as be =
∑

i 6=j be(i, j)
where be(i, j) = nij(e)/nij , nij(e) is the number of geodesics (shortest paths) from vertex i to
vertex j that contain the edge e, and nij is the total number of shortest paths (Boccaletti et al.,
2007; Comellas & Gago, 2007).

A complete graph is a simple graph in which every pair of distinct vertices is connected
by an edge. The complete graph on n vertices has n(n − 1)/2 edges. For a complete graph,
we have b (Gcomplete ) = 1. A path graph is a particularly simple example of a tree, namely
on which is not branched at all, that is, contains only vertices of degree two and one. In
particular, two of its vertices have degree 1 and all others (if any) have degree 2. For a path
graph with n vertices, |E| = n− 1, and therefore b (Gpath) = n(n+ 1)/6. It is easy to see that
b (Gcomplete ) ≤ b(G) ≤ b (Gpath ) .

Lemma 1. (Comellas & Gago, 2007) Let G be a connected graph and let e ∈ E be an edge with
end vertices i, j ∈ V, then

a) be(i, j) = 1 = be(j, i)

b) 2 ≤ be ≤ n2/2 if n is even and 2 ≤ be ≤ (n− 1)2/2 if n is odd.

c) be = 2(n− 1) if one of the end vertices of e has degree 1.

Theorem 12. (Aytaç & Öztürk, 2018) Let Ḡ be the complement graph of G. Then, if G has n
vertices, m edges with domination number γ(G) > 2, then the average edge betweenness of Ḡ is

b(Ḡ) = (n(n− 1) + 2m)/(n(n− 1)− 2m).
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Lemma 2. (Aytaç & Öztürk, 2018) Label the vertices of Cn as 1, 2, . . . , n and the edges of Cn

as e1, e2, . . . , en. Let dij (ek) be the distance between and including the edge ek. nij (ek) is the
number of paths which includes the edge ek with length dij (ek) (1 ≤ i, j, k ≤ n and i 6= j). The
relation between dij (ek) and nij (ek) in graph Cn is in the following.

If dij (ek) = 1, then nij (ek) = 1

If dij (ek) = 2, then nij (ek) = 2

If dij (ek) = 3, then nij (ek) = 3

...

If dij (ek) = (n− 1)/2, then nij (ek) = (n− 1)/2.

Theorem 13. (Aytaç & Öztürk, 2018) If Cn is a cycle, then the average edge betweenness for
the cycle Cn with n vertices is

b (Cn) =

{ (
n2 − 1

)
/8, if n is odd

n2/8, if n is even.

Theorem 14. (Aytaç & Öztürk, 2018) If S1,n is a star, then the average edge betweenness for
the star S1,n with n+ 1 vertices is b (S1,n) = n.

Theorem 15. (Aytaç & Öztürk, 2018) If W1,n is a wheel graph, then the average edge between-
ness for the wheel graph W1,n (n ≥ 5) with n+ 1 vertices is b (W1,n) = (n− 1)/2.

Theorem 16. (Aytaç & Öztürk, 2018) If Km,n is a complete bipartite graph, then the aver-
age edge betweenness for the complete bipartite graph Km,n with m + n vertices is b (Km,n) =(
m2 + n2 − (m+ n)

)
/mn+ 1.

It is crucial to assess average edge betweenness for simple graph class to collect data on which
edge is the most susceptible. A specified edge’s average edge betweenness value is the fraction of
the shortest routes that pass through that edge, calculated across all couples of vertices. Both
localized and global formation of the graph are considered by this calculation.

2.3 Closeness Centrality

In order to show how near a vertex is to all other vertices in a network (Priya, 2018), close-
ness centrality can be utilized. The closeness centrality can be used as a metric of how long
information from a single vertex is distributed to all available vertices in the network.

The closeness of a graph is defined as C =
∑

iC(i), where C(i) is the closeness of a vertex i
and C(i) =

∑
j 6=i 2−d(i,j) (Dangalchev, 2006, 2011; V. Aytac & Turaci, 2018).

Theorem 17. (Dangalchev, 2006) The closeness of

a) the complete graph Kn with n vertices is C (Kn) = (n(n− 1))/2;

b) the star graph Sn with n vertices is C (Sn) = (n−1)(n+2)
4 ;

c) the path Pn with n vertices is C (Pn) = 2n− 4 + 1
2n−2 .

Theorem 18. (Aytaç & Odabaş, 2011) If Cn is a cycle, then the closeness for the cycle Cn

with n vertices is

C (Cn) =

{
2n
(
1− 1/2(n−1)/2

)
, if n is odd

n
(
2− 3/2n/2

)
, if n is even.

Theorem 19. (Aytaç & Odabaş, 2011) If Wn is a wheel, then the closeness for the wheel Wn

with n+ 1 vertices is

C (Wn) =
n(n+ 5)

4
.
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Theorem 20. (Aytaç & Odabaş Berberler, 2018) For any connected G of order n, C(G) ≤
n(n− 1)/2.

Theorem 21. (Aytaç & Odabaş Berberler, 2018) For any connected G of order n,

C(G) ≥ n

diam(G)−1∑
i=1

1/2i

+ (n− diam(G))/2diam(G)

 .

Theorem 22. (Aytaç & Odabaş Berberler, 2018) For any graph G, if diam (G) ≤ 2, then

C(G) = (|V (G)|(|V (G)| − 1) + 2|E(G)|)/4.

Corollary 1. (Aytaç & Odabaş Berberler, 2018) For any graph G, if diam(G) > 3, then

C(Ḡ) = (|V (G)|(|V (G)| − 1)− |E(G)|)/2.

3 Conclusion

Big data is the form of converting all data collected from various sources such as social me-
dia posts, blogs, photographs, videos, and log files into a meaningful and processable form
(Wikipedia, 2019). In this study, the graph theoretical approach of the application of big data
in the social network is considered. Identifying important people is vital for many purposes in
social networks such as Facebook and Twitter. When the graph model of these large networks
is created, it is possible to make big data analysis with some measurements in graph theory. In
this study, definitions of measurements such as vertex betweenness centrality, edge betweenness
centrality and closeness centrality are given. Also, articles on these measurements, which were
previously made by me, are collected. It is thought that the values obtained from the graph
structures discussed here are important in terms of giving the researchers an idea for big data
analysis in large graphs where a big data environment containing these structures is modeled.
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